B-Math-II Back Paper Exam ; Analysis 3

Time : $3.00 \mathrm{hrs} ; \quad$ Max Mark:45; 24 January 2022

1. Let $S \subset \mathbb{R}^{n}$ be open and connected. Let $\phi: S \rightarrow \mathbb{R}$ be continuously differentiable. Let $\underline{a}, \underline{b} \in S$ and α a piecewise smooth path joining \underline{a} and $\underline{b}, \alpha:[0,1] \rightarrow S$. Show that $\int \nabla \phi \cdot d \alpha$ is independent of the path. (15)
2. Calculate the work done by a force field

$$
f(x, y):=(y+3 x) \vec{i}+(2 y-x) \vec{j}
$$

in moving a particle once around the ellipse $4 x^{2}+y^{2}=4$. (15)
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y):=e^{\frac{y-x}{y+x}},(x, y) \in \mathbb{R}^{2} .
$$

Evaluate $\iint_{S} f(x, y) d x d y$ where S is the triangle

$$
\begin{equation*}
S:=\{(x, y): 0 \leq x+y \leq 2, x \geq 0, y \geq 0 .\} \tag{15}
\end{equation*}
$$

4. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be continuous functions. Suppose f_{n} converge to f uniformly on $[a, b]$. Show that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x . \tag{15}
\end{equation*}
$$

5. Le $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f=\left(f_{1}, f_{2}\right), f_{1}(x, y):=e^{x} \cos y, f_{2}(x, y):=e^{x} \sin y$.
a) Is f one-one on \mathbb{R}^{2} ? Prove your answer.
b) Find the inverse of f in a neighbourhood of the point $(1,0)$.
c) Find the image of the coordinate axes under the map f. $(5+5+5)$
